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Marine fish and invertebrates are shifting their regional and global
distributions in response to climate change, but it is unclear whether
their productivity is being affected as well. Here we tested for time-
varying trends in biological productivity parameters across 262 fish
stocks of 127 species in 39 large marine ecosystems and high-seas
areas (hereafter LMEs). This global meta-analysis revealed wide-
spread changes in the relationship between spawning stock size and
the production of juvenile offspring (recruitment), suggesting fun-
damental biological change in fish stock productivity at early life
stages. Across regions, we estimate that average recruitment capacity
has declined at a rate approximately equal to 3% of the historical
maximum per decade. However, we observed large variability among
stocks and regions; for example, highly negative trends in the North
Atlantic contrast with more neutral patterns in the North Pacific. The
extent of biological change in each LME was significantly related to
observed changes in phytoplankton chlorophyll concentration and
the intensity of historical overfishing in that ecosystem. We conclude
that both environmental changes and chronic overfishing have al-
ready affected the productive capacity of many stocks at the recruit-
ment stage of the life cycle. These results provide a baseline for
ecosystem-based fisheries management and may help adjust expec-
tations for future food production from the oceans.
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Human well-being is closely linked with the productivity of
marine fisheries, which provide a significant source of pro-

tein for more than half of the world’s population (1). However,
ongoing environmental and biological changes may impact pro-
ductivity through a variety of mechanisms, including larger habitat
areas for temperate species (2), altered body sizes (3), food
availability (4), and increased exposure to oxygen-depleted and
acidic waters (5). Recent research has documented marked
changes in the distributional patterns of marine species that are
consistent with climate forcing (6, 7). However, the net effect of
these changes on global fish stock productivity is not clearly
understood. In particular, documented environmental changes
(4, 8, 9) and the long-term consequences of overfishing (10, 11)
all impose relevant but poorly constrained effects. Here we
help address this issue by evaluating the evidence for empirical
trends in the relation between the size of the reproductively
mature population (or “spawning stock”) and the annual pro-
duction of juvenile offspring (“recruits”) using a recently syn-
thesized global database of stock-recruit time series (12). We then
test the relation between empirical recruitment trends and re-
gional environmental variables associated with temperature,
phytoplankton abundance, and historical overfishing.
Recruitment is modeled by relating the size of the spawning

stock biomass to the annual production of recruits. The mag-
nitude of annual recruitment is highly variable (13), yet it pro-
vides the basis for population growth and stock productivity by
determining the initial number of fish that may grow, die, or be
harvested by the fishery (14) (i.e., total productivity is the com-
bination of recruitment, individual growth, and mortality). As
such, the stock-recruit relationship has been identified as “the
most important and generally most difficult problem in the biological

assessment of fisheries” (14). The simplest commonly used re-
cruitment function is the Ricker model

Rt = αBt−τe−βBt−τ ,

where recruitment R at time t is an increasing function of the
spawning stock biomass B (lagged by the age of recruitment τ),
with negative exponential density-dependent feedback. The two
model parameters, α and β, characterize the magnitude of recruit-
ment, where α is the maximum reproductive rate (or density-
independent recruitment), and β gives the rate at which recruitment
is reduced by density-dependent feedbacks. These two parameters
combine to give the maximum recruitment capacity for an indi-
vidual stock when dR=dB= 0 and ðd2RÞ=ðdB2Þ< 0, yielding

RMAX =
α

β
e−1,

where e is Euler’s number. Note that RMAX is a biomass-indepen-
dent measure of maximum recruitment and does not depend on
current stock size. This property of the measure is attractive as it
allows comparisonof both abundantandheavily depleted stocks, but
it alsomeans that RMAX occasionally occurs at biomass levels larger
than those observed today. Because RMAX is highly correlated with
alternative biomass-dependent measures of recruitment success
(SI Appendix), we adopt it as a simple and comparable metric of fish
stock productivity at the recruitment stage of their life cycle.

Results
When recruitment models are fitted to data (Fig. 1 A–F), there is
often considerable structure in the residual variation (Fig. 1 G–I)
that suggests that biological productivity may have changed sig-
nificantly over time. Trends can be observed as directed declines
(Fig. 1G), threshold-like dynamics (Fig. 1H), or regime shifts (Fig.
1I; note that the observed shift coincided with the 1977 reversal of
the Pacific Decadal Oscillation) (15). We evaluated evidence for
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changes in recruitment by performing model selection with respect
to static or time-varying biological parameters within the Ricker
model (i.e., α and β;Methods) and estimated changes through time
where parameters are indeed found to vary. We then summarized
trends in recruitment as follows. For an individual stock, we
computed the linear slope of RMAX with respect to time (denoted
ΔRMAX) and standardized the slopes to have units of percent
change per decade relative to the stock-specific historical maxi-
mum, thus combining effects of α and β and capturing broad-scale
trends through time. To describe trends across stocks, we com-
bined ΔRMAX estimates using random-effects meta-analysis to
control for variable time series length and goodness-of-fit across
individual stocks. We denote meta-analytic averages ΔRk

MAX,
representing the mean ΔRMAX for a group k. Groupings are made
on basis of individual large marine ecosystems (LMEs) and major
taxonomic groups. We adopt the LME definition as a simple,
ecologically meaningful (16) and management-relevant (17) way to
spatially categorize individual stocks. To relate recruitment trends
to the environment, we use multiple regression to model ΔRk

MAX as
a function of estimated linear changes in sea surface temperature
(denoted ΔSST), chlorophyll concentration (ΔCHL, a widely-used
a proxy of phytoplankton standing stock), and a measure of his-
torical overfishing (taken as the average ratio of historical stock
biomass to target biomass, denoted B:BMSY). Environmental var-
iables ΔSST and ΔCHL were computed from quality-controlled,
publically available databases consistent with the time window
covered by stock assessments within individual LMEs, and B:BMSY
was calculated as the mean values across all stocks within each
LME. See Methods and SI Methods for full details.
We found that stock-recruitment data supported time-varying

recruitment capacity (RMAX) for 71% (n = 186) of stocks
according to model selection (Fig. 2). Of these, 69% (n = 128)
showed negative trends (Fig. 2). For all stocks combined, ΔRk

MAX
was estimated at approximately −3% per decade, relative to the
historical maximum (P < 0.001; Fig. 2D). However, there was a
broad-scale divergence in values between the North Pacific and
North Atlantic oceans, with the North Atlantic showing steeper

declines. In contrast, the North Pacific showed approximately
neutral trends across four LMEs, each with a relatively large
number of stocks. Across all LMEs, we estimated that 31 of all
39 LMEs (79%), and 20 of 27 LMEs with more than three
assessed stocks (74%), showed negative ΔRk

MAX (Fig. 2). The
most positive value was found in the Gulf of Mexico, whereas the
heavily depleted Newfoundland and Labrador LME showed
the most negative trend (Fig. 2B).
There was significant variation associated with different taxa.

Groundfish (bottom-associated species such as flatfishes, Pleu-
ronectiformes, and cod-like Gadiformes) showed the most neg-
ative ΔRk

MAX (Fig. 2C). At the species level, the most negative
values were observed for several North Atlantic species such as
American plaice (Hippoglossoides platessoides), European plaice
(Pleuronectes platessa), common European sole (Solea vulgaris),
and Atlantic cod (Gadus morhua). In the North Pacific, however,
many groundfish species showed opposite patterns, with stocks of
rex sole (Glyptocephalus zachirus), flathead sole (Hippoglossoides
elassodon), and arrowtooth flounder (Atheresthes stomias) trending
positively. Pelagic (open-water) species such as herring (Clupea
harengus, C. pallasii) and swordfish (Xiphias gladius) often showed
ΔRk

MAX values closer to zero.
In general, we found individual stock-recruit parameters changed

in a way that resulted in stronger density-dependent processes and
reduced maximum reproductive rates. Of individual stocks with
negative ΔRMAX, 71% displayed more negative β parameters and
29% experienced declining α, according to model selection. We
also performed the analysis over a fixed common time window
(1980–2000) and found that the two ΔRMAX values correlated
strongly (r = 0.82; P < 0.001), suggesting that the observed trends
are robust to stocks having variable time series length. We also
found that ΔRMAX was generally independent of the assumed
form of density dependence in the stock-recruit model or to
whether the model let α or β vary in time, indicating further ro-
bustness in ΔRMAX. Likewise, using an alternative metric of re-
cruitment success (expected recruitment at the median historically

Fig. 1. Patterns in stock-recruitment data. Ricker models fitted to stock-recruitment data (A–C) often display systematic errors (D–F). Model residuals can
show diverse behaviors, including progressive declines (G), abrupt thresholds (H), or reversing regime shifts (I). Data are standardized to have unit variance.
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observed biomass) we found no major change in the resulting
trends (see SI Methods for details on these sensitivity analyses).
Importantly, average trends in recruitment capacity in each

ecosystem were found to be significantly related to environ-
mental and fishing-related variables (ΔCHL and B:BMSY,) across
all LMEs (Fig. 3). Considering all species together (Fig. 3A),
ΔRk

MAX in each LME was positively associated with ΔCHL (Fig.
4A), which accounted for 38% of the total variance. Again, an
interesting contrast emerged when isolating the heavily exploited
groundfish (combining orders Pleuronectiformes and Gadiformes;
Fig. 3B). Here, the history of overfishing emerged as the most
important predictor and explained 58% of the total variance.
Analysis of the pelagic Perciformes and Clupeiformes revealed a
positive effect of ΔCHL and negative effect of ΔSST, but these
were marginally insignificant. We also investigated patterns of re-
cruitment variation with respect to maximum body size but found
no significant relationships.

Discussion
Taken together, these results provide empirical context for un-
derstanding contemporary changes in the productivity of exploited

marine fish stocks. To date, future forecasts of fisheries produc-
tivity have varied in their predictions; for example, the productivity
of temperate species has been projected to increase 30–40% based
on expansion of fish habitat and increased primary productivity (2),
whereas models of individual fish metabolism predict shrinking
body sizes with warming oceans (3) that could affect fecundity and
productivity. A recent global study of fisheries time series dem-
onstrated that the relationship between adult biomass and total
yield can be highly nonstationary (18), but the forcing of such
changes has remained unclear. Here we focused our empirical
analysis on stock recruitment dynamics and related observed
nonstationary patterns to changes in plankton abundance and the
history of overfishing. The observed changes in productivity at the
recruitment stage of the life cycle may provide a partial explanation
for nonstationary patterns observed in fisheries yield for the
affected stocks.
We caution that these trends in recruitment biology represent

broad-scale spatial and temporal patterns when averaging over
many stocks and regions. These patterns should be combined with
other model-based forecasts that weigh factors related to habitat
quantity and quality to more fully determine expected change in

Fig. 2. Meta-analysis. Standardized trends in recruitment capacity (ΔRMAX; units % change RMAX per decade, relative to the historical maximum) estimated
by changes in biological recruitment parameters (see text). (A) ΔRk

MAX (representing the meta-analytic average ΔRMAX) by LME containing more than three
assessed stocks. The color of the circle gives the direction and magnitude of ΔRk

MAX and the size of the circle gives the number of stocks in the LME. (B) Meta-
analytic ΔRk

MAX per LME and SE. (C) Taxon-level ΔRk
MAX for species with more than three assessed stocks (●) and by taxonomic order (○). (D) All 262 individual

stock ΔRMAX with the grand meta-analytic mean (P < 0.001) and SE (shaded bar). Meta-analytic means were derived by averaging the individual stock trends
by inverse-variance weighting.
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biomass distribution and the productivity of individual stocks.
We further note that the drivers of recruitment capacity identified
here likely vary in importance among stocks and regions. Bottom-
up changes in plankton concentration and top-down effects of
overfishing are all known to affect recruitment in complex ways,
including effects at both the adult (e.g., maternal effects on re-
cruitment) (19) and larval stages (e.g., food availability) (20). Our
results, however, make neither assumptions nor inferences re-
garding stock-specific mechanisms. Finally, correlations in re-
cruitment may also be important for inferring long-term trends
and patterns of shared responses to environmental changes and
fishing at the regional scale. We emphasize that a more detailed
hierarchical approach that accounts for recruitment correlations
(21, 22) and species interactions is needed to fully resolve re-
gional patterns and drivers and thus provide direct management
guidance for individual stocks within individual LMEs.
At larger scales, the apparent divergence in productivity among

the North Pacific and North Atlantic provides an interesting con-
trast, possibly linked to divergent ecological histories. The North
Pacific experienced a large oceanographic regime shift in the 1970s
(15), which resulted in relatively flat long-term environmental
trends (Fig. 4). Observed patterns suggest that recruitment capacity
may have tracked this variability (Fig. 1I), resulting in small ΔRk

MAX
values overall. Shorter histories of exploitation and lower exploi-
tation rates (23) are also likely to have tempered declines in this
region due to overfishing. In contrast, the North Atlantic is marked
by strong directional environmental change and long-term over-
exploitation (Fig. 4). Environmental and fishing-related trends in
this region were among the most severe and were significantly
related to observed changes in recruitment capacity. An exception
for the North Atlantic trend is the positive ΔRk

MAX value in the
Gulf of Mexico [12 of 13 time series there predate the Deepwater
Horizon (24) spill in 2010]. It is also important to note that the
database is most representative of North American and European
stocks due to the relative scarcity of stock assessments in tropical
oceanic regions of the world (Fig. 4C) (12, 25) where earth system
models predict that plankton productivity will decline more
strongly than in the coastal and temperate regions that dominate
the stock recruitment database (26). This historical bias in spatial

coverage limits our understanding of global fish populations as a
whole (25).
In addition to impacting the productivity of marine fish stocks,

observed changes in recruitment parameters may also have
consequences for the stability of populations. Recent theoretical
work has linked observed patterns of population stability (27) to
changes in stock recruitment parameters (28) due to age-selec-
tive fishing. It was hypothesized that population stability has
decreased in stocks due to increases in the mean and variance of
the maximum reproductive rate α caused by the truncation of
population age structure by fishing. Our results, however, suggest
that such increases in α are not often observed in assessed fish
populations, where α has generally trended downward. Rather,
frequently observed increases in the magnitude of the density-
dependent parameter β may provide an alternative explanation
for reduced stability in exploited stocks based on the well-known
destabilizing effects of strong density-dependent feedbacks (29).
Testing this hypothesis should be a priority for follow-up research.
In summary, empirically estimated trends in recruitment capacity

(Figs. 1 and 2) provide evidence for environmental- and fishing-
related changes in the productivity of marine fish stocks (Fig. 3).
Although far from uniform at the stock level, observed trends were
significantly related to ongoing environmental and biological
change at the ecosystem scale, specifically changes in phytoplankton
biomass and the history of stock biomass depletion (Fig. 4 B and C).
The reality of time-varying biological parameters requires managers
to revisit the common assumptions of fixed maximum sustainable
yields (30) and emphasizes the need for ecosystem-based man-
agement strategies that investigate and account for observed envi-
ronmental and fishing-related impacts on the long-term productive
capacity of fish stocks. Such strategies are enabled by the methods
presented here, in that the complex effects of environmental
changes can be tracked within a reasonably simple assessment
framework. Accounting for such changes is a prerequisite for the
successful rebuilding and sustainable harvesting of fisheries
resources in a rapidly changing environment.

Methods
The RAM Legacy Stock Assessment Database. All stock recruitment data were
extracted from the RAM Legacy Stock Assessment Database (12), which is a
global, quality-controlled database, available publicly at ramlegacy.org/.
Stock assessments provide estimates of both spawning stock biomass (kilo-
grams) and recruitment (no. individuals). We analyzed 262 of the ∼420 time
series available in the database based on (i) whether a recruitment rela-
tionship was already assumed in generating the stock assessment estimates
(12) and (ii) whether the spawning stock biomass and recruitment time se-
ries were estimated directly, as opposed to indirect proxies such as spawner
egg abundance. All series were then normalized to unit variance for easy
comparison across stocks and regions. A list of species used in the analysis,
along with their designated LME, can be found in Table S1. Frequency his-
tograms of the start and end dates of the stock recruitment time series are
shown in Fig. S1 and tabulated in Table S2.

Nonstationary Recruitment Model. The Ricker model can be linearized by
reexpressing recruitment as log survival

ln
�

Rt

Bt−τ

�
= ln α− βBt−τ .

This model can be fitted to data as a linear regression. To model non-
stationary recruitment relationships, we let the recruitment parameters vary
in time (21, 31) by specifying the following linear Gaussian state space model

ln
�

Rt

Bt−τ

�
= ln αt − βtBt−τ +wt ,                              wt ∼  N

�
0, σ2o

�
,

   

�
ln α
β

�
t
=
�
ln α
β

�
t−1

+  

�
v1
v2

�
t
,                          

�
v1
v2

�
t
∼N

��
0
0

�
,  Q=

�
σ2ln α 0
0 σ2β

��
,

where the recruitment parameters are treated as dynamic latent states. Note
that wt is the observation error with variance σ2o and ½v1   v2�t ’ is the process

Fig. 3. Drivers of recruitment capacity. Relationships between LME-level
ΔRk

MAX and environmental and fisheries variables for all species (A) and or-
ders Gadiformes and Pleuronectiformes (B) using multiple regression
(weighted according to the number of stocks in the LME). The three LME-
specific covariates tested include (i) observed changes in average sea surface
temperature (ΔSST) and (ii) chlorophyll concentration (ΔCHL), as well as
changes in overfishing indicated by the ratio of observed to target biomass
(B:BMSY). See Fig. 4 for spatial patterns. The regression slopes were nor-
malized by transforming the regression variables to unit variance. Black
symbols indicate statistical significance. See text and SI Methods for details.
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error vector with covariance matrix Q. The unknown parameters are σ2o and
the diagonal of the matrix Q, which are estimated by the method of maxi-
mum likelihood. Details of the estimation can be found in SI Methods, in-
cluding the model selection algorithm based on the Bayesian information
criterion (BIC). Model selection was used to determine whether variance pa-
rameters should be zero or nonzero, thus determining whether the data
support static or time-varying recruitment parameters (SI Methods). For stocks
with at least one time-varying parameter, the trend in RMAX was summarized
by a linear slope (ΔRMAX) standardized to have unit percent change per de-
cade relative to the historical maximum. For stocks where both α and β were
inferred as static, ΔRMAX is zero. Results for the time-varying recruitment
analysis for all stocks, along with statistical diagnostics, are displayed in
SI Appendix. Model selection results are also given in Table S3.

Meta-Analysis. The nonstationary recruitment analysis and subsequent trend
analysis were applied to each stock individually, and then regional and
taxonomic patterns were summarized using a random effects meta-analysis
model. The random effects model is written

ΔRi
MAX =ΔRk

MAX + ϑi +φi ,

where ΔRi
MAX is the linear slope of RMAX for stock i, ΔRk

MAX is the overall mean
across all stocks in group k, ϑi is the deviation of the observed ΔRi

MAX from the
“true” ΔRi

MAX, and φi is the deviation of the true ΔRi
MAX from ΔRk

MAX. The ran-
dom effects analysis assumes that a group trend can be described by an inverse-
variance weighted average of trends across stocks and stock-specific deviations
from the overall trend (SI Methods). The meta-analysis model was implemented

in the R package rmeta (32). All meta-analytic results for LMEs and taxa are given
in the SI Appendix, which gives group-specific slopes and contributions from
individual stocks. Three sensitivity analyses were also performed and are docu-
mented in SI Methods. These analyses included robustness tests against (i) al-
ternative forms of density dependence (Figs. S2–S4); (ii) BIC model selection
algorithm (Fig. S5); (iii) the choice of alternative metrics of recruitment success
(Fig. S6); and (iv) the impact of variable time series length (Fig. S7).

Global Scale Correlates of Recruitment. To correlate recruitment trends to
environmental change and overfishing intensity, we fit multiple regression
models of the form

ΔRk
MAX = c0 + c1ΔSST+ c2ΔCHL+ c3B : BMSY+ ek ,

where ΔRk
MAX is the vector of ΔRk

MAX estimated per LME, ΔSST is the linear
trend in sea surface temperature in each LME, ΔCHL is the linear trend in
chlorophyll concentration (a widely used proxy for phytoplankton biomass),
B:BMSY is an index of historical overfishing, representing themean historical ratio
of annual biomass to target biomass levels as extracted from the stock as-
sessments (12), c0 is the intercept, c1,   c2,   c3 are the partial slopes, and ek is the
LME-specific regression error. ΔSST and ΔCHL were computed according to the
time window covered by stock assessments within individual LMEs. The fre-
quency distributions of time series start and end dates are shown in Fig. S1.
Historical SST data were extracted from the Simple Ocean Data Assimilation
(33), and CHL data were taken from the in situ database provided in ref. 8. The
trend model for CHL contained a seasonal term due to unequal seasonal
sampling, whereas mean annual temperatures were extracted for SST. The

Fig. 4. Spatial distribution of environmental variables by LME. (A) ΔSST computed over the period covered by stock assessments in each LME. (B) ΔCHL (used
as a common proxy for phytoplankton biomass). (C) B:BMSY (12).
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regression was weighted according to the number of stocks in each LME. We
tested possible interactions but none were retained. All independent variables
were standardized to unit variance to standardize the regression coefficients.

Themultiple regression analysis was fit three times on three sets of species.
The first included all species in each LME, and twomore subsets (within LMEs)
weremade on thebasis of taxonomic order. One taxonomic grouping included
Gadiformes and Pleuronectiformes (generally bottom-associated species) and
other included Clupeiformes and Perciformes (pelagic, open-water species).
These orders do not occur in all LMEs; therefore, the regression analysis on

the subsets included fewer data points. The Gadiformes and Pleuronectiformes
occurred in 21 LMEs and the Perciformes and Clupeiformes occurred in 23 LMEs.
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